LINZ. In einem ambitionierten Forschungsprojekt beschäftigt sich der 1991 gegründete MES-Hersteller Industrie Informatik gemeinsam mit Kunden, Forschungs- und Bildungseinrichtungen intensiv mit dem Thema Predictive Analytics. Das Ergebnis ist eine Out-of-the-box-Lösung, die rasch und effizient den Blick in die Zukunft ermöglicht.
Mit der über uns hereinbrechenden Digitalisierungswelle steigen die Anforderungen an eine effiziente Verarbeitung der schier unbegrenzten Datenmengen, die wir daraus gewinnen – und das idealerweise in Echtzeit. Kombiniert mit neuen Erkenntnissen rund um die Trendthemen Künstliche Intelligenz und Machine Learning, kann man nun auch den viel zitierten Blick in die Glaskugel werfen und sich daraus zuverlässige Ergebnisse erwarten.
Ein Produkt vor allem für KMU
Dass Predictive Analytics kein neues Thema ist, weiß Industrie Informatik Mitbegründer und Head of Strategic Product Management, Thomas Krainz. Für ihn ist allerdings die Herangehensweise entscheidend: „Unser Ziel war es, eine Out-of-the-box-Lösung zu entwickeln, mit der unsere User schnell, einfach und natürlich leistbar zu Ergebnissen kommen. Vor allem mittelständischen Unternehmen soll so der Umgang mit großen Datenmengen und damit der Zugang zu umfassenden Digitalisierungsmaßnahmen ermöglicht werden. Das ist im Bereich der Predictive-Themen keine Selbstverständlichkeit.“
Der Weg zum markttauglichen Produkt führte über ein mehrjähriges Forschungsprojekt, an dem mehrere Instanzen maßgeblich beteiligt waren. Den theoretischen, wissenschaftlichen Zugang ermöglichte die Wirtschaftsuniversität Wien. Mit der RISC Software GmbH konnte man zudem ein etabliertes und international anerkanntes Forschungsunternehmen gewinnen. Die gemeinsam gewonnenen Erkenntnisse wurden dann in Fallbeispielen von ausgewählten Kunden erarbeitet. Im Fokus stand die Erarbeitung möglicher Anwendungsfelder auf Basis vorhandener Daten, sowie die Ausarbeitung, Entwicklung, Erprobung und Bewertung von Algorithmen, Verfahren und Technologien zu Prognosezwecken.
„Das Ergebnis aus dem Forschungsprojekt ist einerseits ein Out-of-the-Box-Technologie-Stack, der sowohl in der Cloud als auch on-premises einsetzbar ist“, erklärt Krainz. „Weiters haben wir ein Data-Preprocessing-Modell entwickelt, das dem Anwender dabei hilft, Daten aus cronetwork MES im ersten Schritt zu bereinigen und aufzubereiten, bevor eine KI die laufende Bewertung und Interpretation der daraus gewonnenen Informationen vornimmt.“
Diverse Einsparungspotenziale
Dass all diese Vorgänge auf dem Standard-Datenmodell von cronetwork MES basieren, schafft für den User große Effizienzvorteile, die sich in der raschen Umsetzbarkeit der Predictive-Analytics-Methoden niederschlagen. Hinzu kommt die Verwendung des Random Forest Modells als Lern-Algorithmus, welches bekannt ist für schnelle Durchlaufzeiten und sehr gute Interpretierbarkeit der Ergebnisse.
Thomas Krainz: „Erfolgsentscheidend ist am Ende die Anpassung all dieser Technologien und Funktionen an die jeweilige Datensituation und vor allem die Erwartungshaltung der Kunden. Künstliche Intelligenz und Predictive Analytics sind keine Wunderheiler. Sie sind weder besser noch intelligenter in ihren Aufgaben als ein Mensch. Ihr Vorteil liegt in der Nachbildung von menschlichem Know-how – und das bei hoher Geschwindigkeit und außerdem rund um die Uhr; daraus leiten sich viele Möglichkeiten ab.“ Konkret gemeint sind damit Prognosen zu relativen Ausschüssen und Arbeitsplatzstörungen in Folgeschichten sowie zu Qualitätsstati nach Fertigungsschritten. „Allein mit diesen Informationen kann man verborgene Einsparungspotenziale aufdecken und die Effizienz am Shopfloor massiv optimieren“, verspricht Krainz. (pj)